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AN ERGODIC THEOREM 
WITH LARGE NORMALISING CONSTANTS 

BY 

JON AARONSON 

ABSTRACT 

We generalise W. Feller's limit theorem for (independent) random variables 
with infinite moments. 

Suppose that {X.} are independent identically distributed random variables, 

and that E ( I X ,  I) = oo. Let S. = X, + . .  �9 + X.. In this situation, W. Feller proved 

THEOREM A [3]. I[ b ( n ) > 0  are constants such that b (n) /n  increases as n, 

then, either L imlS ,  l / b (n )=oo  a.e. or IS, l/b(n)---%_=O a.e. 

The second alternative is characterised by E ( a ( I X ,  I))< oo where a = b -~. 

From this result, Y. S. Chow and H. Robbins deduced 

THEOREM B [2]. In the same situation, for any constants b. either 
Lim,~o~lS.I/b. = ~ a.e. or L i m , ~ l S . I / b .  = 0 a.e. (or both). 

The question arose as to whether these results remain true for a general 

non-integrable ergodic stationary process. In [1] we proved Theorem B for a 

non-integrable positive ergodic stationary process ( theorem 1 in [1]) and showed 

by example that Theorem A unmodified fails in general. The example in [1] 

(adapted from [6]) was an ergodic, stationary process {X,} with E({ X1 [) = ~ and 

S , / n - - * l  a.e. The point of this note is to show that, with the minimum 

modification necessary to allow for this example, Theorem A is general. We 

prove 

THEOREM A'. Let (X, ~ ,  tz, T)  be an ergodic measure preserving transforma- 

tion (/z (X) = 1) and let [ : X ~ R be a measurable function. I f  b (n)  > 0 and 
[Ek=,,[oT I / b ( n ) = ~ 1 7 6  a.e. or b (n ) /n~oo  as n---~oo then either L i m , ~  ~  k 

ly~k=o[--' o T k I/b(n)---~.~=O a.e. 
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PROOF. 

Then 

W r i t e / , ( x ) =  , , k and x) 

A(x) = Lim ]f, (x) l /b(n) .  

A (Tx) = Lim I f .+~(x)-  f(x)l/b(n) 

-- Lim I[.+,(x)l/b(n + 1 ) -  Lim If(x)l/b(n) 

= ( x ) .  

Hence A = A ( x )  is constant a.e. and we must prove that A < ~ : f f  A = 0 .  

Suppose that A < oo. By Egorov 's  theorem, we can choose B E ~ ,  tz (B) = 1/2 

such that 

(*) Sup ess-sup If, (x )l /b(n ) = M < oo. 
n ~ l  x C B  

Let b,(n) = Mb(n),  and a(n)  = bTZ(n). Then a(n)/n ~ 0 as n 1' oo. 

We now induce the whole process onto B, and show that If, ( x ) l / b ( n ) ~ O  a.e. 

on B. This will establish the theorem since A is constant. 

Let, for x E B, ~b(x) --- inf{n => 1 : T"x E B} (the return time function of T on 

B )  and Tax = T~'~X~x (the induced transformation of T on B).  Then (B, ~ fq B, 

/xB, To) is an e.m.p.t, and f,~bdt x = 1 (see [4] and [5] respectively). 

Let g ( x ) = [ f , ~ ( x ) l  for x ~ B .  By construction g(x)<=bl(ch(x)), hence 

a (g (x)) -< 6 (x) and fn a (g)d/x =< 1. 

Let g, ( x ) =  YS~I,g(T~x). The next stage in the proof is to show that 

(**) a(g,(x))/n---~O a.e. on B. 

This is clear in case g is integrable on B, for then gn - cn a.e., by the Birkhott 

ergodic theorem, and so 

a(g, (x))/n <= a(2cn)/n for n large 

----> 0 as/l---->oo. 

If g is not integrable on B, we need the following 

CLAIM. a(x)  ~ C( A( x ) )  as x ~ oo where A ( g )  is integrable on B, A ( x ) / x  ~, as 

x ~, B (x )  ~oo, and C(x) /x  ~ 0 as x ~ oo. 

PROOF. Let b(x) = a-~(x). No generality is lost in assuming that b(0) = 0, 
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b(n + p ) =  ( 1 - p ) b ( n ) + p b ( n  + 1) for 0=<p =< 1, n E Z+ (this assumption will 

not perturb a(x) (x > b(1)) by more than 1). Sequences of this form have the 

property that b(x)/x 1̀  as x 1̀  (x E R) iff b(n)/n 1̀  as n 1̀  (n E N). (Differen- 
tiate) 

Firstly, note that b(n)/n 1̀  as n 1̀  (n E N) means precisely that 

Note also that 

n(o ) b(n)=b(1) I + ~---~ 
k = 2  

where ak >--- 1. 

Thus a(x)/x ~ 0 as x 1̀  oo r b(n)/n---~,oz r II~=2(1 + (ak -- 1)/k) = oo. Let 

I~m = i~(B t'l[m <-_a(g)<m + 1]). Since a(g)is integrable on B, we have that 

YT.=, (m + 1)u,. < ~ .  

We first find a sequence {D(n)}~_~ satisfying 

(i) D (n)/n 1̀  ~ as n 1' % 

(ii) 2 O(n + 1)/~, <o% 
n - I  

(iii) b (n)/O (n) 1̀  as n 1'. 

From the above remarks (about b(n)), D(n) will need to be of the form 

( /3k ) w h e r e / 3 k > l  and kFI2(l+ k k f l ~ ) = o o  D(n)=DI- I  l + k _  1 = 
k = 2  = 

in order to satisfy condition (i). It is easy to check that condition (iii) will be 

satisfied if, in addition, 13k --< a~. 
Now choose nk --~ oo such that Vk _-> 1 

(a) ET, =,k (m + 1)txm < 1/3 ~ and 

(b) "k~' 1% . . . .  ,(1 + (~j 1 ) / ] )>2 .  

Clearly, ::1 1 _-</3k _-< ak for k _-> 1 such that 

(c) II~':~;+, (1 + (~j - 1)8) = 2. 

Let D(n) = D(1)II~_2(1 + ~k/(k - 1)). Conditions (i) and (iii) are satisfied. So is 

(ii): 

r tlk + l - - I  

E D(m+l)/x~ = E  E ( m + l ) [ D ( r n + l ) / ( m + l ) l / z , , ,  
m ~ n  I k ~ O  m = n  k 

<= 2 (D(nk)/nk)(1/3k) by (a) and (i) 
k ~ l  
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n( ) 
= O ( 1 ) ~ z ( 1 / 3 k ) l -  [ l + f l J  - 1  2 k < ~ .  

= i=2 ] 

We now define D(x) for x E R ,  x_->0 by D ( 0 ) = 0 ,  D ( n + p ) =  
(1 -p )D(n )+pD(n+l ) ,  0 ~ p - < l ,  n E Z +  and we have that D(x)/x ~oo as 

It can also be checked (by differentiating) that b(x)/D(x) '~ as x 1' (x > 1). 

Now let C(x) = D- l (x ) ,  then C(x) '~ oo and C(x)/x ,~ 0 as x 1' oo. Let  A(x)  = 
D(a(x)), then A(x)~  oo as x 1' oo and 

A(x)/x ], as x 1' since A(b(x))/b(x)= D(x)/b(x)J, as x 1'. 

Lastly A ( g )  is integrable on B by condit ion (ii). 

The  claim is established, and we can now prove  (**) in case g is not integrable 

on B. We have 

A(g")<=A(g)"( = ~ 

whence  

=o(n) 

From (**), we deduce  immediate ly  that 

g~ 
b(n) 

because A(n)/n ~ as n t and g _->0 

-c~n by the Birkhoff  ergodic theorem,  since A(g)EL ' (B) ,  

a(g,) = c(a(g~ <= c (a (g ) , )  since B(x) '~ as x 1' 

<--_ C(2cln) for n large 

a s  /I----> o0. 

a.e. on B 

since a(g,)< en ~ g. < b,(en)< ebl(n) as b(n)/n ~. 
Ek=,,~b(TBx). Then  T~x = T*k(X)x and Now, let ~b , (x)=  "- '  k 

If*,,x,(x)l = ~ f ( r  ix) 
j=O 

I n-l dg~(T~x)-I I 
= Z Z /(T'T~x) 

k =o j =0 

<=g.(x). 

Hence  I[~,ax)(x)l/b(n)--~O a.e. on B. 

To  finish, suppose n = ~bkax)(x) + / , ( x )  where  0 -< l , ( x ) <  ,~tl.,,,,k ~X)x)., Then ,  

since ~ . ( x ) - 2 n  a.e. on B, k . ( x ) -  n/2 a.e. on B, and we have 
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I f . (x)l  < f+~.(x)l + If,.,x)(Tks"(x))l. 

For n large, k. (x) < n and so 

I f , ,~  a.e. on B 

and 
k (x)  

If~.(TY x)l<=b,(l,(x)) by (*) 

k 

<= b,(49(T;x)). 

Since f s  49d/x < ~ we have by the Borel-Cantel l i  lemma that 

49 ~ Tk"/n --~ 0 a.e. whence 

b,(49 o rk . ) /b(n)-~O.  

This completes the proof that A = 0. Q.E.D.  

Using the methods of [2], we can now obtain 

COROLLARY B'. Let {X. } be an ergodic stationary process and suppose b. > O, 

L i m , ~  b./ n = ~, then, either L i m . ~  l S. ]lb, = ~ a.e. or Lim,_~l S. lib. = 0 a.e. 

(or both). 

PROOf. Following [2] verbatim, let b(n) = n. max{bk/k : 1 <= k <= n}. Then, 

b(n)>= b,, b(n)/n ~ ~ and 3nk ~ such that b (nk )=  b,,. 

If L i m . ~ = l S . I / b ,  <r162 on some set of positive measure,  then 

L i m . ~ = l S . I / b ( n ) < ~  on the same set, and IS, I/b(n)---~O a.e. which implies 

IS.~ I/b,~ ---~ 0 a.e. Q.E.D.  

If we were to take, in the theorem, b(n) = n, then our proof  would establish 

the proposition: 

LimIS. I/n<~ a.e .  ~S./n---~constant a.e .  

Theorem A'  has a "dual version" for transformations preserving infinite 

measures: 

THEOREM C. Let (X, ~,  tz, T) be a conservative ergodic measure preserving 
transformation, / . t ( X ) = ~ .  Let a ( x ) ' ~ ,  a (x ) / x  $O as x ~ and let b ( x ) =  

a-~(x ). The following conditions are equivalent: 

(I) 3 f  E L 1+ such that L i m , ~  S, (f)/a (n ) > 0 on a set of positive measure, 

(II)  ::IB ~ ~ ,  p.(B) = 1 such that fBa(~B)d~ < ~ where ~s is the return time 
[unction of T on B, 

(III) S , ( f ) / a (n ) - - -~  a.e. V f E  L~+, 
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Ek=,,q~BoT~/b(n)---~O a.e. on B VB E ~, / z ( B ) < ~  (IV) " ' 

(where (in (I)) S, ff)  = f + f o  T + . - - + f o  T" '). 

PROOF. First, note  that for f ~ L'+ : L i m , ~ S , ( f ) / a ( n )  is T-super  invariant,  

and hence  constant .  The  H o p f  ergodic theorem now shows that 

(f)/a (n) = Cl~ (f) where c _-> 0 and I ~ (f) = f fdt~. Lira S, 
d• 

Assume (I). Then c > 0. Fix A E ~ ,  / x ( A ) =  2, and, by Egorov ' s  theorem,  

choose  B C A, tz (B)  = 1 such that 

S,(1A)(X)>6a(n) V x E B ,  n>-l. 

Let q~ be the return time function of T on B, and TB be the t ransformat ion 
n - I  induced by T on B. Write  q~. = Ek =o q~ o T~. Then 

n -= & ~  

2 " 

on B 

a.e. on B by the H o p f  ergodic theorem 

2 S,~,T~x,(1A)(T~x) 
k = 0  

>~ a(~)(r~x). 
k =0  

Thus Lim,_~ "- '  k (1/n) Xk =,, a (q~) o T8 < ~ on B and so f ,  a (q~)dp, < oo. This is (II). 

Now suppose (II); fBa(q~)dlx <o~. The  proof  of T h e o r e m  A '  shows that 

a(~o,)/n---~O. Since ~r _-<n<q~s,+~, we have that a(~o,)/n--~O a.e. on B iff 

S,(1B)/a(n)---,oo a.e. on B which latter is the same as (III). 

The  above  remarks  show that (III)  implies a(q~,)/n --->0 a.e. on B VB E 

(where q~ is the return time function of T on B and ~r is as above),  whence,  

since b(n)/n ~, q~,/b(n)--->O a.e. This is (IV). 

Now suppose that q~,/b(n)--*O on B for some B E ~ (where ~ is the return 

time function of T on B and ~r is as above).  The  proof  of T h e o r e m  A '  shows 

that ::IA G ~ ,  A C B such that if 4, is the return time function of TB on A, and 
n 1 g = q~,, then a(Xk=0g.  T~)/n ~ 0  a.e. on A.  One  can see easily that g is the 

return time function of T on A, and so S. (1a)(x)/a(n)-- ,~ a.e. on A, which is 

the same as (III). Q .E .D.  



188 J. AARONSON Israel J. Math. 

REFERENCES 

1. J. Aaronson, On the ergodic theory of non-integrable functions and infinite measure spaces, 
Israel J. Math. 27 (1977), 163-173. 

2. Y. S. Chow and H. Robbins, On sums of independent random variables with ~c moments and 
"fair" games, Proc. Nat. Acad. Sci. U.S.A. 47 (1961), 330-335. 

3. W. Feller, A limit theorem for random variables with infinite moments, Amer. J. Math. 68 
(1946), 257. 

4. S. Kakutani, Induced measure preserving transformations, Proc. Imp. Acad. Sci. Tokyo 19 
(1943), 635-641. 

5. M. Kac, On the notion of recurrence in discrete stochastic processes, Bull. Amer. Math. Soc. 53 
(1947), 1002-1010. 

6. D. Tanny, A 0-1 law for stationary sequences, Z. Wahrscheinlichkeitstheorie und Verw. 
Gebiete 30 (1974), 13%148. 

1NSTITUT DES HAUTES ETUDES SCIENTIFIOUES 
35, ROUTE DE CHARTRES 

91440 BURES-SuR-YVETTE, FRANCE 

Current address 
DEPARTMENT OF MATHEMATICS 

TEL AVXV UNIVERSITY 
RAMAT Avtv, ISRAEL 


