AN ERGODIC THEOREM WITH LARGE NORMALISING CONSTANTS

BY

JON AARONSON

ABSTRACT

We generalise W. Feller's limit theorem for (independent) random variables with infinite moments.

Suppose that $\{X_n\}$ are independent identically distributed random variables, and that $E(|X_1|) = \infty$. Let $S_n = X_1 + \cdots + X_n$. In this situation, W. Feller proved

THEOREM A [3]. If $b(n) > 0$ are constants such that $b(n)/n$ increases as n, *then, either* $\overline{\text{Lim}}|S_n|/b(n) = \infty$ a.e. *or* $|S_n|/b(n) \rightarrow_{n \rightarrow \infty} 0$ a.e.

The second alternative is characterised by $E(a(|X_1|)) < \infty$ where $a = b^{-1}$. From this result, Y. S. Chow and H. Robbins deduced

THEOREM B [2]. *In the same situation, for any constants b. either* $\overline{\lim}_{n\to\infty} |S_n|/b_n = \infty$ a.e. *or* $\lim_{n\to\infty} |S_n|/b_n = 0$ a.e. *(or both).*

The question arose as to whether these results remain true for a general non-integrable ergodic stationary process. In [1] we proved Theorem B for a non-integrable *positive* ergodic stationary process (theorem 1 in [1]) and showed by example that Theorem A unmodified fails in general. The example in [1] (adapted from [6]) was an ergodic, stationary process $\{X_n\}$ with $E(|X_1|) = \infty$ and $S_n/n \rightarrow 1$ a.e. The point of this note is to show that, with the minimum modification necessary to allow for this example, Theorem A is general. We prove

THEOREM A'. Let (X, \mathcal{B}, μ, T) be an ergodic measure preserving transforma*tion* $(\mu(X) = 1)$ *and let* $f: X \rightarrow \mathbb{R}$ *be a measurable function. If* $b(n) > 0$ *and* $b(n)/n \uparrow \infty$ as $n \to \infty$ then either $\overline{\lim}_{n\to\infty} |\sum_{k=0}^{n-1} f \circ T^k|/b(n)=\infty$ a.e. or $|\sum_{k=0}^{n-1} f \circ T^k |/b(n) \rightarrow_{n \rightarrow \infty} 0$ a.e.

Received April 1, 1980

PROOF. Write $f_n(x) = \sum_{k=0}^{n-1} f(T^k x)$ and

$$
\lambda(x) = \overline{\lim_{n \to \infty}} |f_n(x)|/b(n).
$$

Then

$$
\lambda(Tx) = \overline{\lim}_{n \to \infty} |f_{n+1}(x) - f(x)|/b(n)
$$

\n
$$
\geq \overline{\lim}_{n \to \infty} |f_{n+1}(x)|/b(n+1) - \lim_{n \to \infty} |f(x)|/b(n)
$$

\n
$$
= \lambda(x).
$$

Hence $\lambda = \lambda(x)$ is constant a.e. and we must prove that $\lambda < \infty \Rightarrow \lambda = 0$. Suppose that $\lambda < \infty$. By Egorov's theorem, we can choose $B \in \mathcal{B}$, $\mu(B) = 1/2$ such that

(*)\t\t\tSup ess-sup
$$
|f_n(x)|/b(n) = M < \infty
$$
.

Let $b_1(n) = Mb(n)$, and $a(n) = b_1^{-1}(n)$. Then $a(n)/n \downarrow 0$ as $n \uparrow \infty$.

We now induce the whole process onto B, and show that $|f_n(x)|/b(n) \rightarrow 0$ a.e. on B . This will establish the theorem since λ is constant.

Let, for $x \in B$, $\phi(x) = \inf\{n \geq 1 : T^n x \in B\}$ (the return time function of T on B) and $T_Bx = T^{\phi(x)}x$ (the induced transformation of T on B). Then $(B, \mathcal{B} \cap B,$ $\mu_{\rm B}$, $T_{\rm B}$) is an e.m.p.t. and $\int_{\rm B}\phi d\mu = 1$ (see [4] and [5] respectively).

Let $g(x) = |f_{\phi(x)}(x)|$ for $x \in B$. By construction $g(x) \leq b_1(\phi(x))$, hence $a(g(x)) \leq \phi(x)$ and $\int_B a(g) d\mu \leq 1$.

Let $g_n(x) = \sum_{k=0}^{n-1} g(T_{B}^{k}x)$. The next stage in the proof is to show that

$$
(*) \t a(g_n(x))/n \to 0 \t a.e. on B.
$$

This is clear in case g is integrable on B, for then $g_n \sim cn$ a.e., by the Birkhoff ergodic theorem, and so

$$
a(g_n(x))/n \leq a(2cn)/n \quad \text{for } n \text{ large}
$$

$$
\rightarrow 0 \quad \text{as } n \rightarrow \infty.
$$

If g is not integrable on B , we need the following

CLAIM. $a(x) \sim C(A(x))$ as $x \uparrow \infty$ where $A(g)$ is integrable on B, $A(x)/x \downarrow$ as $x \uparrow$, $B(x) \uparrow \infty$, and $C(x)/x \downarrow 0$ as $x \uparrow \infty$.

PROOF. Let $b(x) = a^{-1}(x)$. No generality is lost in assuming that $b(0) = 0$,

 $b(n+p)=(1-p)b(n)+pb(n+1)$ for $0\leq p\leq 1$, $n\in\mathbb{Z}_+$ (this assumption will not perturb $a(x)$ ($x > b(1)$) by more than 1). Sequences of this form have the property that $b(x)/x \uparrow$ as $x \uparrow (x \in \mathbb{R})$ iff $b(n)/n \uparrow$ as $n \uparrow (n \in \mathbb{N})$. (Differentiate)

Firstly, note that $b(n)/n \uparrow$ as $n \uparrow (n \in \mathbb{N})$ means precisely that

$$
b(n) = b(1) \prod_{k=2}^{n} \left(1 + \frac{\alpha_k}{k-1} \right) \quad \text{where } \alpha_k \geq 1.
$$

Note also that

$$
\frac{b(n)}{n} = b(1) \prod_{k=2}^{n} \left(1 + \frac{\alpha_k - 1}{k} \right).
$$

Thus $a(x)/x \downarrow 0$ as $x \uparrow \infty \Leftrightarrow b(n)/n \rightarrow_{n \to \infty} \infty \Leftrightarrow \prod_{k=2}^{\infty} (1 + (\alpha_k - 1)/k) = \infty$. Let $\mu_m = \mu (B \cap [m \le a(g) < m + 1])$. Since $a(g)$ is integrable on B, we have that $\sum_{m=1}^{\infty} (m + 1)\mu_m < \infty.$

We first find a sequence $\{D(n)\}_{n=1}^{\infty}$ satisfying

(i)
$$
D(n)/n \uparrow \infty
$$
 as $n \uparrow \infty$,

(ii)
$$
\sum_{n=1}^{\infty} D(n+1)\mu_n < \infty,
$$

(iii)
$$
b(n)/D(n) \uparrow \text{ as } n \uparrow.
$$

From the above remarks (about $b(n)$), $D(n)$ will need to be of the form

$$
D(n) = D \prod_{k=2}^{n} \left(1 + \frac{\beta_k}{k-1} \right) \text{ where } \beta_k \ge 1 \text{ and } \prod_{k=2}^{\infty} \left(1 + \frac{\beta_k - 1}{k} \right) = \infty
$$

in order to satisfy condition (i). It is easy to check that condition (iii) will be satisfied if, in addition, $\beta_k \leq \alpha_k$.

Now choose $n_k \rightarrow \infty$ such that $\forall k \ge 1$

(a) $\sum_{m=n_k}^{\infty} (m+1)\mu_m < 1/3^k$ and

(b) $\prod_{i=n_k+1}^{n_{k+1}}(1+(\alpha_i-1)/j)>2.$

Clearly, \exists $1 \leq \beta_k \leq \alpha_k$ for $k \geq 1$ such that

(c)
$$
\prod_{j=n_k+1}^{n_{k-1}} (1+(\beta_j-1)/j) = 2.
$$

Let $D(n) = D(1) \prod_{k=2}^{n} (1 + \beta_k/(k-1))$. Conditions (i) and (iii) are satisfied. So is (ii):

$$
\sum_{m=n_1}^{\infty} D(m+1)\mu_m = \sum_{k=0}^{\infty} \sum_{m=n_k}^{n_{k+1}-1} (m+1)[D(m+1)/(m+1)]\mu_m
$$

$$
\leq \sum_{k=1}^{\infty} (D(n_k)/n_k)(1/3^k) \qquad \text{by (a) and (i)}
$$

$$
= D(1) \sum_{k=1}^{\infty} (1/3^{k}) \prod_{j=2}^{n_{1}} \left(1 + \frac{\beta_{j} - 1}{j}\right) 2^{k} < \infty.
$$

We now define $D(x)$ for $x \in \mathbb{R}$, $x \ge 0$ by $D(0)=0$, $D(n+p)=$ $(1-p)D(n)+pD(n+1)$, $0\leq p\leq 1$, $n\in\mathbb{Z}_+$ and we have that $D(x)/x \uparrow \infty$ as $x \uparrow \infty$ $(x \ge 1)$.

It can also be checked (by differentiating) that $b(x)/D(x) \uparrow$ as $x \uparrow (x > 1)$.

Now let $C(x) = D^{-1}(x)$, then $C(x) \uparrow \infty$ and $C(x)/x \downarrow 0$ as $x \uparrow \infty$. Let $A(x) =$ $D(a(x))$, then $A(x)$ $\uparrow \infty$ as $x \uparrow \infty$ and

$$
A(x)/x
$$
 \downarrow as $x \uparrow$ since $A(b(x))/b(x) = D(x)/b(x) \downarrow$ as $x \uparrow$.

Lastly $A(g)$ is integrable on B by condition (ii).

The claim is established, and we can now prove $(**)$ in case g is not integrable on B. We have

$$
A(g_n) \leq A(g)_n \bigg(= \sum_{k=0}^{n-1} A(g \circ T_B^k) \bigg) \quad \text{because } A(n)/n \downarrow \text{ as } n \uparrow \text{ and } g \geq 0
$$

whence $\sim c_1 n$ by the Birkhoff ergodic theorem, since $A(g) \in L^1(B)$,

> $= o(n)$ as $n \to \infty$. $a(g_n) = C(A(g_n)) \leq C(A(g)_n)$ since $B(x) \uparrow$ as $x \uparrow$ $\leq C(2c_1n)$ for *n* large

From (**), we deduce immediately that

$$
\frac{g_n(x)}{b(n)} \to 0 \quad \text{a.e. on } B
$$

since $a(g_n) < \varepsilon n \Rightarrow g_n < b_1(\varepsilon n) < \varepsilon b_1(n)$ as $b(n)/n \uparrow$. Now, let $\phi_n(x) = \sum_{k=0}^{n-1} \phi(T_B^k x)$. Then $T_B^k x = T^{\phi_k(x)} x$ and

$$
|f_{\phi_n(x)}(x)| = \left| \sum_{j=0}^{\phi_n(x)-1} f(T^j x) \right|
$$

=
$$
\left| \sum_{k=0}^{n-1} \sum_{j=0}^{\phi(T^k x)-1} f(T^j T^k B x) \right|
$$

$$
\leq g_n(x).
$$

Hence $|f_{\phi_n(x)}(x)|/b(n) \to 0$ a.e. on B.

To finish, suppose $n = \phi_{k_n(x)}(x) + l_n(x)$ where $0 \le l_n(x) < \phi(T_B^{k_n(x)}x)$. Then, since $\phi_n(x) \sim 2n$ a.e. on *B*, $k_n(x) \sim n/2$ a.e. on *B*, and we have

$$
|f_n(x)| \leq f_{\phi_{k_n}}(x)| + |f_{l_n(x)}(T_B^{k_n}(x))|.
$$

For *n* large, $k_n(x) < n$ and so

$$
|f_{\phi_{k_n}}(x)/b(n)| < |f_{\phi_{k_n}}(x)|/b(k_n(x)) \to 0 \quad \text{a.e. on } B
$$

and

$$
|f_{l_n}(T_B^{k_n(x)}x)| \leq b_1(l_n(x)) \quad \text{by (*)}
$$

$$
\leq b_1(\phi(T_B^{k_n}x)).
$$

Since $\int_B \phi d\mu < \infty$ we have by the Borel-Cantelli lemma that

$$
\phi \circ T^{k_n}/n \to 0 \quad \text{a.e.} \quad \text{whence}
$$

$$
b_1(\phi \circ T^{k_n})/b(n) \to 0.
$$

This completes the proof that $\lambda = 0$. C.E.D.

Using the methods of [2], we can now obtain

COROLLARY B'. Let $\{X_n\}$ be an ergodic stationary process and suppose $b_n > 0$. $\overline{\lim}_{n\to\infty}$ $b_n/n = \infty$, then, either $\overline{\lim}_{n\to\infty} |S_n|/b_n = \infty$ a.e. or $\overline{\lim}_{n\to\infty} |S_n|/b_n = 0$ a.e. *(or both).*

PROOF. Following [2] verbatim, let $b(n) = n \cdot \max\{b_k/k : 1 \leq k \leq n\}$. Then, $b(n) \geq b_n$, $b(n)/n \uparrow \infty$ and $\exists n_k \rightarrow \infty$ such that $b(n_k) = b_{n_k}$.

If $\lim_{n\to\infty} |S_n|/b_n < \infty$ on some set of positive measure, then $\overline{\lim}_{n\to\infty} |S_n|/b(n) < \infty$ on the same set, and $|S_n|/b(n) \to 0$ a.e. which implies $|S_{n_k}|/b_{n_k} \to 0$ a.e. Q.E.D.

If we were to take, in the theorem, $b(n) = n$, then our proof would establish the proposition:

 $\overline{\lim}|S_n|/n < \infty$ a.e. $\Rightarrow S_n/n \to \text{constant}$ a.e.

Theorem A' has a "dual version" for transformations preserving infinite measures:

THEOREM C. Let (X, \mathcal{B}, μ, T) be a conservative ergodic measure preserving *transformation,* $\mu(X) = \infty$. Let $a(x) \uparrow \infty$, $a(x)/x \downarrow 0$ as $x \uparrow \infty$ and let $b(x) =$ $a^{-1}(x)$. The following conditions are equivalent:

(I) $\exists f \in L^1_+$ such that $\lim_{n \to \infty} S_n(f)/a(n) > 0$ on a set of positive measure,

(II) $\exists B \in \mathcal{B}, \mu(B) = 1$ *such that* $\int_B a(\varphi_B) d\mu < \infty$ *where* φ_B *is the return time [unction of T on B,*

(III) $S_n(f)/a(n) \rightarrow \infty$ a.e. $\forall f \in L^{\perp}$,

(IV) $\Sigma_{k=0}^{n-1} \varphi_B \circ T_B^k / h(n) \to 0$ a.e. on B $\forall B \in \mathcal{B}, \mu(B) < \infty$ *(where (in (I))* $S_n(f) = f + f \circ T + \cdots + f \circ T^{n-1}$.

PROOF. First, note that for $f \in L^1$: Lim_{n→∞} $S_n(f)/a(n)$ is T-super invariant, and hence constant. The Hopf ergodic theorem now shows that

$$
\underline{\lim}_{n\to\infty} S_n(f)/a(n) = c\mu(f) \quad \text{where } c \ge 0 \quad \text{and} \quad \mu(f) = \int_X f d\mu.
$$

Assume (I). Then $c > 0$. Fix $A \in \mathcal{B}$, $\mu(A) = 2$, and, by Egorov's theorem, choose $B \subset A$, $\mu(B) = 1$ such that

$$
S_n(1_A)(x) > \delta a(n) \qquad \forall x \in B, \quad n \ge 1.
$$

Let φ be the return time function of T on B, and T_B be the transformation induced by T on B. Write $\varphi_n = \sum_{k=0}^{n-1} \varphi \circ T_B^k$. Then

$$
n = S_{\varphi_n(x)}(1_B)(x) \quad \text{on } B
$$

\n
$$
\sim \frac{1}{2} S_{\varphi_n(x)}(1_A)(x) \quad \text{a.e. on } B \text{ by the Hopf ergodic theorem}
$$

\n
$$
= \frac{1}{2} \sum_{k=0}^{n-1} S_{\varphi(T_B^k x)}(1_A)(T_B^k x)
$$

\n
$$
> \frac{\delta}{2} \sum_{k=0}^{n-1} a(\varphi)(T_B^k x).
$$

Thus $\overline{\lim}_{n\to\infty}$ *(1/n)* $\sum_{k=0}^{n-1} a(\varphi) \circ T_B^k < \infty$ on B and so $\int_B a(\varphi) d\mu < \infty$. This is *(II).*

Now suppose (II); $\int_B a(\varphi) d\mu < \infty$. The proof of Theorem A' shows that $a(\varphi_n)/n \to 0$. Since $\varphi_{s_n} \leq n < \varphi_{s_{n+1}}$, we have that $a(\varphi_n)/n \to 0$ a.e. on B iff $S_n(1_B)/a(n) \rightarrow \infty$ a.e. on B which latter is the same as (III).

The above remarks show that (III) implies $a(\varphi_n)/n \to 0$ a.e. on B $\forall B \in \mathcal{B}$ (where φ is the return time function of T on B and φ_n is as above), whence, since $b(n)/n \uparrow$, $\varphi_n/b(n) \rightarrow 0$ a.e. This is (IV).

Now suppose that $\varphi_n/b(n) \to 0$ on B for some $B \in \mathcal{B}$ (where φ is the return time function of T on B and φ_n is as above). The proof of Theorem A' shows that $\exists A \in \mathcal{B}, A \subseteq B$ such that if ϕ is the return time function of T_B on A, and $g = \varphi_{\phi}$, then $a(\sum_{k=0}^{n-1} g \cdot T_A^k)/n \to 0$ a.e. on A. One can see easily that g is the return time function of T on A, and so $S_n(1_A)(x)/a(n) \rightarrow \infty$ a.e. on A, which is the same as (III). Q.E.D.

188 **J. AARONSON Israel J. Math.**

REFERENCES

1. J. Aaronson, *On the ergodic theory of non-integrable functions and infinite measure spaces,* Israel J. Math. 27 (1977), 163-173.

2. Y. S. Chow and H. Robbins, *On sums of independent random variables with* ∞ moments and *"fair" games,* Proc. Nat. Acad. Sci. U.S.A. 47 (1961), 330-335.

3. W. Feller, *A limit theorem for random variables with infinite moments,* Amer. J. Math. **68** (1946), 257.

4. S. Kakutani, *Induced measure preserving transformations,* Proc. Imp. Acad. Sci. Tokyo 19 (1943), 635-641.

5. M. Kac, *On the notion of recurrence in discrete stochastic processes,* Bull. Amer. Math. Soc. 53 (1947), 1002-1010.

6. D. Tanny, A 0-1 *law for stationary sequences,* Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 30 (1974), 139-148.

1NSTITUT DES HAUTES ETUDES SCIENTIFIOUES 35, ROUTE DE CHARTRES 91440 BURES-SuR-YVETTE, FRANCE

Current address DEPARTMENT OF MATHEMATICS TEL AVIV UNIVERSITY RAMAT Avtv, ISRAEL