AN ERGODIC THEOREM WITH LARGE NORMALISING CONSTANTS

BY

JON AARONSON

ABSTRACT

We generalise W. Feller's limit theorem for (independent) random variables with infinite moments.

Suppose that $\{X_n\}$ are independent identically distributed random variables, and that $E(|X_1|) = \infty$. Let $S_n = X_1 + \cdots + X_n$. In this situation, W. Feller proved

THEOREM A [3]. If b(n) > 0 are constants such that b(n)/n increases as n, then, either $\overline{\text{Lim}} |S_n|/b(n) = \infty$ a.e. or $|S_n|/b(n) \rightarrow_{n \to \infty} 0$ a.e.

The second alternative is characterised by $E(a(|X_1|)) < \infty$ where $a = b^{-1}$. From this result, Y. S. Chow and H. Robbins deduced

THEOREM B [2]. In the same situation, for any constants b_n either $\overline{\lim_{n\to\infty}}|S_n|/b_n = \infty$ a.e. or $\underline{\lim_{n\to\infty}}|S_n|/b_n = 0$ a.e. (or both).

The question arose as to whether these results remain true for a general non-integrable ergodic stationary process. In [1] we proved Theorem B for a non-integrable *positive* ergodic stationary process (theorem 1 in [1]) and showed by example that Theorem A unmodified fails in general. The example in [1] (adapted from [6]) was an ergodic, stationary process $\{X_n\}$ with $E(|X_1|) = \infty$ and $S_n/n \rightarrow 1$ a.e. The point of this note is to show that, with the minimum modification necessary to allow for this example, Theorem A is general. We prove

THEOREM A'. Let (X, \mathcal{B}, μ, T) be an ergodic measure preserving transformation $(\mu(X) = 1)$ and let $f: X \to \mathbb{R}$ be a measurable function. If b(n) > 0 and $b(n)/n \uparrow \infty$ as $n \to \infty$ then either $\overline{\lim}_{n \to \infty} |\Sigma_{k=0}^{n-1} f \circ T^k| / b(n) = \infty$ a.e. or $|\sum_{k=0}^{n-1} f \circ T^k| / b(n) \to_{n \to \infty} 0$ a.e.

Received April 1, 1980

Vol. 38, 1981

PROOF. Write $f_n(x) = \sum_{k=0}^{n-1} f(T^k x)$ and

$$\lambda(x) = \overline{\lim_{n\to\infty}} |f_n(x)|/b(n).$$

Then

$$\lambda(Tx) = \overline{\lim_{n \to \infty}} |f_{n+1}(x) - f(x)| / b(n)$$
$$\geq \overline{\lim_{n \to \infty}} |f_{n+1}(x)| / b(n+1) - \lim_{n \to \infty} |f(x)| / b(n)$$
$$= \lambda(x).$$

Hence $\lambda = \lambda(x)$ is constant a.e. and we must prove that $\lambda < \infty \Rightarrow \lambda = 0$. Suppose that $\lambda < \infty$. By Egorov's theorem, we can choose $B \in \mathcal{B}$, $\mu(B) = 1/2$ such that

(*)
$$\sup_{n\geq 1} \operatorname{ess-sup}_{x\in B} |f_n(x)|/b(n) = M < \infty.$$

Let $b_1(n) = Mb(n)$, and $a(n) = b_1^{-1}(n)$. Then $a(n)/n \downarrow 0$ as $n \uparrow \infty$.

We now induce the whole process onto B, and show that $|f_n(x)|/b(n) \rightarrow 0$ a.e. on B. This will establish the theorem since λ is constant.

Let, for $x \in B$, $\phi(x) = \inf\{n \ge 1: T^n x \in B\}$ (the return time function of T on B) and $T_B x = T^{\phi(x)} x$ (the induced transformation of T on B). Then $(B, \mathcal{B} \cap B, \mu_B, T_B)$ is an e.m.p.t. and $\int_B \phi d\mu = 1$ (see [4] and [5] respectively).

Let $g(x) = |f_{\phi(x)}(x)|$ for $x \in B$. By construction $g(x) \leq b_1(\phi(x))$, hence $a(g(x)) \leq \phi(x)$ and $\int_{B} a(g) d\mu \leq 1$.

Let $g_n(x) = \sum_{k=0}^{n-1} g(T_B^k x)$. The next stage in the proof is to show that

(**)
$$a(g_n(x))/n \to 0$$
 a.e. on B.

This is clear in case g is integrable on B, for then $g_n \sim cn$ a.e., by the Birkhoff ergodic theorem, and so

$$a(g_n(x))/n \leq a(2cn)/n$$
 for n large
 $\rightarrow 0$ as $n \rightarrow \infty$.

If g is not integrable on B, we need the following

CLAIM. $a(x) \sim C(A(x))$ as $x \uparrow \infty$ where A(g) is integrable on B, $A(x)/x \downarrow$ as $x \uparrow$, $B(x) \uparrow \infty$, and $C(x)/x \downarrow 0$ as $x \uparrow \infty$.

PROOF. Let $b(x) = a^{-1}(x)$. No generality is lost in assuming that b(0) = 0,

b(n+p) = (1-p)b(n) + pb(n+1) for $0 \le p \le 1$, $n \in \mathbb{Z}_+$ (this assumption will not perturb a(x) (x > b(1)) by more than 1). Sequences of this form have the property that $b(x)/x \uparrow$ as $x \uparrow (x \in \mathbb{R})$ iff $b(n)/n \uparrow$ as $n \uparrow (n \in \mathbb{N})$. (Differentiate)

Firstly, note that $b(n)/n \uparrow$ as $n \uparrow (n \in \mathbb{N})$ means precisely that

$$b(n) = b(1) \prod_{k=2}^{n} \left(1 + \frac{\alpha_k}{k-1}\right)$$
 where $\alpha_k \ge 1$.

Note also that

$$\frac{b(n)}{n}=b(1)\prod_{k=2}^{n}\left(1+\frac{\alpha_{k}-1}{k}\right).$$

Thus $a(x)/x \downarrow 0$ as $x \uparrow \infty \Leftrightarrow b(n)/n \to_{n \to \infty} \infty \Leftrightarrow \prod_{k=2}^{\infty} (1 + (\alpha_k - 1)/k) = \infty$. Let $\mu_m = \mu (B \cap [m \le a(g) < m+1])$. Since a(g) is integrable on B, we have that $\sum_{m=1}^{\infty} (m+1)\mu_m < \infty$.

We first find a sequence $\{D(n)\}_{n=1}^{\infty}$ satisfying

(i)
$$D(n)/n \uparrow \infty$$
 as $n \uparrow \infty$,

(ii)
$$\sum_{n=1}^{\infty} D(n+1)\mu_n < \infty,$$

(iii)
$$b(n)/D(n)\uparrow$$
 as $n\uparrow$.

From the above remarks (about b(n)), D(n) will need to be of the form

$$D(n) = D \prod_{k=2}^{n} \left(1 + \frac{\beta_k}{k-1} \right)$$
 where $\beta_k \ge 1$ and $\prod_{k=2}^{\infty} \left(1 + \frac{\beta_k - 1}{k} \right) = \infty$

in order to satisfy condition (i). It is easy to check that condition (iii) will be satisfied if, in addition, $\beta_k \leq \alpha_k$.

Now choose $n_k \rightarrow \infty$ such that $\forall k \ge 1$

(a) $\sum_{m=n_k}^{\infty} (m+1)\mu_m < 1/3^k$ and

(b) $\prod_{j=n_k+1}^{n_{k+1}} (1 + (\alpha_j - 1)/j) > 2.$

Clearly, $\exists 1 \leq \beta_k \leq \alpha_k$ for $k \geq 1$ such that

(c)
$$\prod_{j=n_k+1}^{n_{k-1}} (1 + (\beta_j - 1)/j) = 2.$$

Let $D(n) = D(1)\prod_{k=2}^{n}(1 + \beta_k/(k-1))$. Conditions (i) and (iii) are satisfied. So is (ii):

$$\sum_{m=n_1}^{\infty} D(m+1)\mu_m = \sum_{k=0}^{\infty} \sum_{m=n_k}^{n_{k+1}-1} (m+1) [D(m+1)/(m+1)]\mu_m$$
$$\leq \sum_{k=1}^{\infty} (D(n_k)/n_k) (1/3^k) \quad \text{by (a) and (i)}$$

Vol. 38, 1981

$$= D(1) \sum_{k=1}^{\infty} (1/3^k) \prod_{j=2}^{n_1} \left(1 + \frac{\beta_j - 1}{j}\right) 2^k < \infty.$$

We now define D(x) for $x \in \mathbf{R}$, $x \ge 0$ by D(0) = 0, D(n+p) = (1-p)D(n) + pD(n+1), $0 \le p \le 1$, $n \in \mathbf{Z}_+$ and we have that $D(x)/x \uparrow \infty$ as $x \uparrow \infty$ ($x \ge 1$).

It can also be checked (by differentiating) that $b(x)/D(x) \uparrow$ as $x \uparrow (x > 1)$.

Now let $C(x) = D^{-1}(x)$, then $C(x) \uparrow \infty$ and $C(x)/x \downarrow 0$ as $x \uparrow \infty$. Let A(x) = D(a(x)), then $A(x) \uparrow \infty$ as $x \uparrow \infty$ and

$$A(x)/x \downarrow$$
 as $x \uparrow$ since $A(b(x))/b(x) = D(x)/b(x) \downarrow$ as $x \uparrow$.

Lastly A(g) is integrable on B by condition (ii).

The claim is established, and we can now prove (**) in case g is not integrable on B. We have

$$A(g_n) \leq A(g)_n \left(= \sum_{k=0}^{n-1} A(g \circ T_B^k) \right) \text{ because } A(n)/n \downarrow \text{ as } n \uparrow \text{ and } g \geq 0$$

 $\sim c_1 n$ by the Birkhoff ergodic theorem, since $A(g) \in L^1(B)$, whence

 $a(g_n) = C(A(g_n)) \leq C(A(g)_n) \quad \text{since } B(x) \uparrow \text{ as } x \uparrow$ $\leq C(2c_1n) \quad \text{for } n \text{ large}$ $= o(n) \quad \text{as } n \to \infty.$

From (**), we deduce immediately that

$$\frac{g_n(x)}{b(n)} \to 0 \qquad \text{a.e. on } B$$

since $a(g_n) < \varepsilon n \Rightarrow g_n < b_1(\varepsilon n) < \varepsilon b_1(n)$ as $b(n)/n \uparrow$. Now, let $\phi_n(x) = \sum_{k=0}^{n-1} \phi(T_B^k x)$. Then $T_B^k x = T^{\phi_k(x)} x$ and

$$|f_{\phi_n(x)}(x)| = \left| \sum_{j=0}^{\phi_n(x)-1} f(T^j x) \right|$$
$$= \left| \sum_{k=0}^{n-1} \sum_{j=0}^{\phi(T_B^k x)-1} f(T^j T_B^k x) \right|$$
$$\leq g_n(x).$$

Hence $|f_{\phi_n(x)}(x)|/b(n) \rightarrow 0$ a.e. on B.

To finish, suppose $n = \phi_{k_n(x)}(x) + l_n(x)$ where $0 \le l_n(x) < \phi(T_B^{k_n(x)}x)$. Then, since $\phi_n(x) \sim 2n$ a.e. on B, $k_n(x) \sim n/2$ a.e. on B, and we have

$$|f_n(x)| \leq f_{\phi_{k_n}}(x)| + |f_{l_n(x)}(T_B^{k_n}(x))|.$$

For *n* large, $k_n(x) < n$ and so

$$|f_{\phi_{k_n}}(x)/b(n)| < |f_{\phi_{k_n}}(x)|/b(k_n(x)) \to 0$$
 a.e. on B

and

$$|f_{l_n}(T_B^{k_n(x)}x)| \leq b_1(l_n(x)) \quad \text{by (*)}$$
$$\leq b_1(\phi(T_B^{k_n}x)).$$

Since $\int_{B} \phi d\mu < \infty$ we have by the Borel–Cantelli lemma that

$$\phi \circ T^{k_n}/n \to 0$$
 a.e. whence
 $b_1(\phi \circ T^{k_n})/b(n) \to 0.$

This completes the proof that $\lambda = 0$.

Using the methods of [2], we can now obtain

COROLLARY B'. Let $\{X_n\}$ be an ergodic stationary process and suppose $b_n > 0$, $\overline{\lim}_{n\to\infty} b_n/n = \infty$, then, either $\overline{\lim}_{n\to\infty} |S_n|/b_n = \infty$ a.e. or $\underline{\lim}_{n\to\infty} |S_n|/b_n = 0$ a.e. (or both).

PROOF. Following [2] verbatim, let $b(n) = n \cdot \max\{b_k/k : 1 \le k \le n\}$. Then, $b(n) \ge b_n$, $b(n)/n \uparrow \infty$ and $\exists n_k \to \infty$ such that $b(n_k) = b_{n_k}$.

If $\lim_{n\to\infty} |S_n|/b_n < \infty$ on some set of positive measure, then $\overline{\lim}_{n\to\infty} |S_n|/b(n) < \infty$ on the same set, and $|S_n|/b(n) \to 0$ a.e. which implies $|S_{n_k}|/b_{n_k} \to 0$ a.e. Q.E.D.

If we were to take, in the theorem, b(n) = n, then our proof would establish the proposition:

$$\overline{\lim_{n\to\infty}} |S_n|/n < \infty \quad \text{a.e.} \quad \Rightarrow S_n/n \to \text{constant} \quad \text{a.e.}$$

Theorem A' has a "dual version" for transformations preserving infinite measures:

THEOREM C. Let (X, \mathcal{B}, μ, T) be a conservative ergodic measure preserving transformation, $\mu(X) = \infty$. Let $a(x) \uparrow \infty$, $a(x)/x \downarrow 0$ as $x \uparrow \infty$ and let $b(x) = a^{-1}(x)$. The following conditions are equivalent:

(I) $\exists f \in L^{1}_{+}$ such that $\underline{\lim}_{n \to \infty} S_{n}(f)/a(n) > 0$ on a set of positive measure,

(II) $\exists B \in \mathcal{B}, \mu(B) = 1$ such that $\int_B a(\varphi_B) d\mu < \infty$ where φ_B is the return time function of T on B,

(III) $S_n(f)/a(n) \rightarrow \infty$ a.e. $\forall f \in L^1_+$,

O.E.D.

(IV) $\sum_{k=0}^{n-1} \varphi_B \circ T_B^k / b(n) \rightarrow 0$ a.e. on $B \forall B \in \mathcal{B}, \ \mu(B) < \infty$ (where (in (I)) $S_n(f) = f + f \circ T + \cdots + f \circ T^{n-1}$).

PROOF. First, note that for $f \in L^{1}_{+}$: $\underline{\lim}_{n \to \infty} S_{n}(f)/a(n)$ is T-super invariant, and hence constant. The Hopf ergodic theorem now shows that

$$\operatorname{Lim}_{n\to\infty} S_n(f)/a(n) = c\mu(f) \quad \text{where } c \ge 0 \quad \text{and} \quad \mu(f) = \int_X f d\mu$$

Assume (I). Then c > 0. Fix $A \in \mathcal{B}$, $\mu(A) = 2$, and, by Egorov's theorem, choose $B \subset A$, $\mu(B) = 1$ such that

$$S_n(1_A)(x) > \delta a(n) \quad \forall x \in B, n \ge 1.$$

Let φ be the return time function of T on B, and T_B be the transformation induced by T on B. Write $\varphi_n = \sum_{k=0}^{n-1} \varphi \circ T_B^k$. Then

$$n \equiv S_{\varphi_n(x)}(1_B)(x) \quad \text{on } B$$

$$\sim \frac{1}{2} S_{\varphi_n(x)}(1_A)(x) \quad \text{a.e. on } B \text{ by the Hopf ergodic theorem}$$

$$= \frac{1}{2} \sum_{k=0}^{n-1} S_{\varphi(T_B^k x)}(1_A)(T_B^k x)$$

$$> \frac{\delta}{2} \sum_{k=0}^{n-1} a(\varphi)(T_B^k x).$$

Thus $\overline{\text{Lim}}_{n\to\infty}(1/n)\Sigma_{k=0}^{n-1}a(\varphi)\circ T_B^k < \infty$ on B and so $\int_B a(\varphi)d\mu < \infty$. This is (II).

Now suppose (II); $\int_B a(\varphi) d\mu < \infty$. The proof of Theorem A' shows that $a(\varphi_n)/n \to 0$. Since $\varphi_{s_n} \leq n < \varphi_{s_{n+1}}$, we have that $a(\varphi_n)/n \to 0$ a.e. on B iff $S_n(1_B)/a(n) \to \infty$ a.e. on B which latter is the same as (III).

The above remarks show that (III) implies $a(\varphi_n)/n \to 0$ a.e. on $B \forall B \in \mathscr{B}$ (where φ is the return time function of T on B and φ_n is as above), whence, since $b(n)/n \uparrow$, $\varphi_n/b(n) \to 0$ a.e. This is (IV).

Now suppose that $\varphi_n/b(n) \to 0$ on *B* for some $B \in \mathscr{B}$ (where φ is the return time function of *T* on *B* and φ_n is as above). The proof of Theorem A' shows that $\exists A \in \mathscr{B}, A \subseteq B$ such that if ϕ is the return time function of T_B on *A*, and $g = \varphi_{\phi}$, then $a(\sum_{k=0}^{n-1} g \cdot T_A^k)/n \to 0$ a.e. on *A*. One can see easily that *g* is the return time function of *T* on *A*, and so $S_n(1_A)(x)/a(n) \to \infty$ a.e. on *A*, which is the same as (III). Q.E.D.

J. AARONSON

REFERENCES

1. J. Aaronson, On the ergodic theory of non-integrable functions and infinite measure spaces, Israel J. Math. 27 (1977), 163-173.

2. Y. S. Chow and H. Robbins, On sums of independent random variables with ∞ moments and "fair" games, Proc. Nat. Acad. Sci. U.S.A. 47 (1961), 330-335.

3. W. Feller, A limit theorem for random variables with infinite moments, Amer. J. Math. 68 (1946), 257.

4. S. Kakutani, Induced measure preserving transformations, Proc. Imp. Acad. Sci. Tokyo 19 (1943), 635-641.

5. M. Kac, On the notion of recurrence in discrete stochastic processes, Bull. Amer. Math. Soc. 53 (1947), 1002-1010.

6. D. Tanny, A 0-1 law for stationary sequences, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 30 (1974), 139-148.

Institut des Hautes Etudes Scientifiques 35, route de Chartres 91440 Bures-Sur-Yvette, France

Current address Department of Mathematics Tel Aviv University Ramat Aviv, Israel